
LOZENGE-TILING MARKOV CHAIN: LATTICE PATHS, CONTRACTION

PROPERTY AND WILSON’S METHOD

MATH GR 6153 PROBABILITY II FINAL PRESENTATION

WILSON, DAVID BRUCE. “MIXING TIMES OF LOZENGE TILING AND CARD SHUFFLING MARKOV CHAINS”

Heyuan Yao

Department of Mathematics, Columbia University

April 25, 2023



LUBY-RANDALL-SINCLAIR MARKOV CHAIN
STATE SPACE

This Markov chain was introduced by Luby, Randall, and Sinclair, where each
state can be represented by lattice paths.
The tiled region is assumed to be simply connected.
The state space is the set of all workable tiling ways, which is equivalent to a
group of lattice paths.
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN
TRANSITION RULE

The transition rule is to uniformly pick a point on a lattice path and refresh it,
except when refresh is not allowed because the operation will make the new
path overlap the path bounded above (below).
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN
NONLOCAL MOVE

If this occurs, a "nonlocal move" is adopted. If there are k chains bounded
above (below) the local minimum (maximum), and we decide to move the
point up (down), then with a probability of 1

k+1 , we do so, and with a
probability of k

k+1 , we do nothing.
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN
HEIGHT FUNCTION

The region where the lattice paths reside, which is equivalent to the tiled
region, is assumed to have a width of n, with m local moves separating the
top and bottom configurations, and p points where a lattice path may be
moved. We define the height function of path i

hi(−
n
2
) = 0, and hi(x) =

{
hi(x − 1

2) +
1
2 , an up move from x − 1

2 to x,
hi(x − 1

2)−
1
2 , otherwise

(1)
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN
DISPLACEMENT FUNCTION AND GAP FUNCTION

The displacement function of a tiling is:

Φ(h) =
∑

i

n
2∑

x=− n
2

hi(x)cos
βx
n
, β ∈ [0, π]. (2)

The gap function between two ordered tilings is Φ(g) = Φ(ĥ)− Φ(ȟ), where ĥ
and ȟ represent the height functions of the tilings, and g = ĥ − ȟ.
Φ(g) = 0 if and only if ĥ and ȟ completely overlap.
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UPPER BOUND
CONTRACTION PROPERTY

Given the condition that the location x at path i is picked, we have that

E[∆Φ(g)|x, i] ≤ [
gi(x − 1

2) + gi(x + 1
2)

2
− gi(x)]cos(

βx
n
) := B(g, x, i). (3)

And with some algebra, we can construct the contraction property in this
situation, which is

E[∆Φ] ≤
−1 + cos(βn)

p
Φ, (4)

and the equality holds when β = π. We point that

− β2

2n2p
≤

−1 + cosβn
p

≤ − β

2n2p
, (5)
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UPPER BOUND
COUPLING

Using this property, we obtain that

tmix(ϵ) ≤
2 + o(1)

β2 pn2log(
m

Φminϵ
). (6)

The sketch of the proof is that

P(Φt > 0)Φmin ≤ E[Φt] ≤ Φ0[1 −
1 − cosβn

p
]t ≤ Φ0[1 − β2

2n2p
]t ≤ Φ0e−

β2

2n2p
t (7)

where Φmin = cos[β
n
2−1

n ] the lowest positive gap. We have Φ0 < m and
Φmin > cosβ2 ∼ π−β

2 .
Wilson further argued that the optimal way to lower the upper bound is to let
β = π −Θ( 1

logn), which leads that

tmix(ϵ) ≤
2 + o(1)

π2 pn2log(
m
ϵ
). (8)
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UPPER BOUND
HEXAGON

When the tiling region is a regular hexagon with side length l, we have that
n = 2l, m = l3 and p = 2l(l − 1). The upper bound for tmix(ϵ) is

48 + o(1)
π2 l4log(l).

8 / 12



LOWER BOUND
WILSON’S METHOD 2.0

Lemma 1

Let (Xt) be an irreducible aperiodic Markov chain with state space χ and transition
matrix P. Let Φ be an eigenfunction of P with eigenvalue 1

2 < λ < 1, For 0 < ϵ < 1
and let R > 0 satisfy Ex(|Φ(X1)− Φ(x)|2) ≤ R for all x ∈ χ. Then for any x,

tmix(ϵ) ≥
1

2log( 1
λ)
[log(

(1 − λΦ2(x))
2R

+ log(
1 − ϵ

ϵ
))]. (9)
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LOWER BOUND
THE ORIGINAL WILSON’S METHOD

Lemma 2

If a function Φ on the state space of a Markov chain satisfies

E(Φ(Xt+1)|Xt) = (1 − γ)Φ(Xt), (10)

and E[(∆Φ)2|Xt] ≤ R, where ∆Φ = Φ(Xt+1)− Φ(Xt), then when the number of
move t is bounded by

log(Φmax) +
1
2 log( γϵ4R)

−log(1 − γ)
, (11)

and
either 0 ≤ γ ≤ 2 −

√
2, or 0 < γ ≤ 1 with odd t, (12)

we have d(t) ≥ 1 − ϵ.
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LOWER BOUND
HEXAGON

As l becomes large, E(Φ(Xt+1)|Xt) = (1 − γ)Φ(Xt) is satisfied, where
γ ∼ β2

2pn2 ∼ π2

16l4 and R ≤ l due to the nonlocal move. Therefore, according to
Wilson’s method, the lower bound is

8 − o(1)
π2 l4 log(l).
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