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LUBY-RANDALL-SINCLAIR MARKOV CHAIN

STATE SPACE
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This Markov chain was introduced by Luby, Randall, and Sinclair, where each
state can be represented by lattice paths.

The tiled region is assumed to be simply connected.

The state space is the set of all workable tiling ways, which is equivalent to a
group of lattice paths.



LUBY-RANDALL-SINCLAIR MARKOV CHAIN

TRANSITION RULE

NANNN /77777

The transition rule is to uniformly pick a point on a lattice path and refresh it,
except when refresh is not allowed because the operation will make the new

path overlap the path bounded above (below).
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN

NONLOCAL MOVE
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN

HEIGHT FUNCTION

The region where the lattice paths reside, which is equivalent to the tiled
region, is assumed to have a width of n, with m local moves separating the
top and bottom configurations, and p points where a lattice path may be
moved. We define the height function of path i

1)

NS v [ hi(x—=3)+ 3, anup move fromx — 3 to x,
hl(_E) = 0, and hi(x) = { hi(x — i) I otherwise
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LUBY-RANDALL-SINCLAIR MARKOV CHAIN

DISPLACEMENT FUNCTION AND GAP FUNCTION
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The displacement function of a tiling is:

Z Z hi(x cos— € [0, 7]. (2)

i x=—%

The gap function between two ordered tilings is ®(g) = ®(h) — ®(h), where h
and /1 represent the height functions of the tilings, and g = — h.
®(g) = 0if and only if 1 and : completely overlap.



UPPER BOUND

CONTRACTION PROPERTY

Given the condition that the location x at path i is picked, we have that

BlAe(g)d < (280D o) — b )

n

And with some algebra, we can construct the contraction property in this
situation, which is
—1 + cos(Z
E[A®] < (”)fl), (4)
P

and the equality holds when § = 7. We point that

B
;2 - —1 + cos . B

_ < 7
2n%p — p - 2n%p’ ©)




UPPER BOUND

COUPLING

Using this property, we obtain that

2+o(1 m
ts(0) < 20D priog( ), ©
32 DQpine
The sketch of the proof is that
1 — cos? 2 2
P(®; > 0)Byin < E[®;] < Bo[1 — %} ol — Sl < e ()

1

T

where ®,,;, = cos|[3%-
Din > cosg #

Wilson further argued that the optimal way to lower the upper bound is to let
p=m—06( logn) which leads that

] the lowest positive gap. We have ¢, < m and

2t O(l)mzlog( ). 8)

tmix(e) <



UPPER BOUND

HEXAGON

When the tiling region is a regular hexagon with side length I, we have that
n=2l,m=10Pandp = 2I(l — 1). The upper bound for t,,;,(¢) is

48 +0o(1)
2

*log(1).
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LOWER BOUND

WILSON’S METHOD 2.0

Lemmal
Let (X}) be an irreducible aperiodic Markov chain with state space x and transition

matrix P. Let ® be an eigenfunction of P with eigenvalue ; < A <1,For0 < e <1
and let R > 0 satisfy E,(|®(X;1) — ®(x)|*) < R for all x € x. Then for any x,

1 (1 — AP%(x)) 1—¢
> 2log )[log( R + log(——))]- )

€

tmix(e)

> =



LOWER BOUND

THE ORIGINAL WILSON’S METHOD

Lemma 2

If a function ® on the state space of a Markov chain satisfies
E(P(X11)|Xt) = (1 = 7)P(Xy), (10)

and E[(A®)?|X;] < R, where A® = &(X;,1) — ®(X;), then when the number of
move t is bounded by

10g(Pmax) + %log(ﬁ)
—log(1 —7)

(11)

and
either0 < v <2 — /2, or0 < v < 1withodd t, (12)

we have d(t) > 1 —e.



LOWER BOUND

HEXAGON

As I becomes large, E(®(X;11)|X:) = (1 — v)P(X}) is satisfied, where
v o~ 2;% ~ % and R <[ due to the nonlocal move. Therefore, according to
Wilson’s method, the lower bound is

8 —o(1)

4
1" log(1l).
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